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Density of states for vibrations of fractal drums
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Vibrations of membranes with fractal boundarigsactal drum$ are investigated. Numerical results are
presented for Koch drums of fractal dimensiop=3/2 at prefractal generations 1-3, and for Koch snowflake
drums O;=In4/In 3) at generations 3 and 4. The results show that the low-frequency integrated densities of
states(IDOS’s) of the drums are well approximated by a two-term asymptotic of the form given by the
modified Weyl-Berry(MWB) conjecture, which predicts a correction &N(Q)«<QPt to the leading-order
Weyl term. In the high-frequency regime, where the half wavelength is smaller than the smallest features of the
prefractal perimeter, the two-term Weyl asymptotic is applicable, wit() ~ (). The results also indicate
that oscillations inAN(€)) arise due to localization of the wave amplitude near the prefractal perimeter. It is
argued that for a self-similar fractal boundary, the amplitude of the oscillations is asymptotically proportional
to QP1, which implies anO(QP1), rather than the conjecturex{QP°1), error term for the asymptotic IDOS
given by the MWB conjecture.
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I. INTRODUCTION whereDj; is the fractal dimension ofS, Ag is the area o
andC is a positive constant.

Fractal geometry provides a unifying theoretical frame- The Berry conjecturd4], where D¢ is defined as the
work for the description of natural irregularifyl]. The es- Hausdorff dimension, was disproved by counterexample in
sential properties of hierarchically disordered systems are ofRef. [5], where Brossard and Carmona suggested that the
ten determined by a single parameter, the fractal dimensioMinkowski dimension might be more appropriate. In Ref.
When different systems with the same fractal dimension disf6], Lapidus showed that for a drum with Minkowski mea-
play quantitatively similar behaviors, deterministic fractal surable perimetedS, the following relation holds for large
models may be used to gain insight into the behavior of moré):
complex naturally disordered system]. In the present
study, we consider vibrations of membranes with fractal

_ 2/p
boundaries, so-called fractal drums. AN(Q) =Asr4m—N(Q) 4
The natural modeg and frequencies» of a drum are
solutions of the Dirichlet boundary value problem, —0(QP1) (5)
(V?+w?) =0 onS, 1)

whereD; is the Minkowski dimension 08S. Thus Lapidus
#=0 on dS ) proposed the MWB conjecture, with the value of the con-
' stantC in Eqg. (3) also given a new interpretation. Later,
Lapidus[7] showed tha€ cannot depend on the geometry of
whereS and dS denote the planar surface and the boundary,q perimeter in as simple a way as proposed in IR&¥.
of the drum, respectively. Letl({)) denote the number of Reference§8,9] show that for some systems, the MWB con-

linear independent solutiong of Egs. (1) and (2) with @ jectyre cannot hold unless the consténis replaced by a
<(, i.e., the number of natural frequencies of the membrang ction of O that is oscillatory about a constant.

(including degeneracigsess than(). The quantityN(€2) is In Ref.[4], Berry proposed that his conjecture should also
the integrated density of staté®OS) of the system. _apply to prefractal systems in the low-frequency regime.
How N((2) depends on the geometry of the boundary isReferenced10—17 considered resonators with the Koch
closely related to Kac’s question “Can one hear the shape of ;e boundary shown, for the third generation, in Fig).1
a drum?”[3]. The Berry conjecturd4], and its modified  The ranges of frequencies considered in REf8—14 were
form, the modified Weyl-BerryMWB) conjecture, is that jhsyfficient for quantitative confirmation of the MWB con-
one can at least hear the fractal dimension of the boundary gfctyre. Nevertheless, the results indicated qualitative agree-
a fractal drum, because the asymptotic, [afyeIDOS fol-  ment, with the low-frequency modal density depleted by the
lows irregularity of the perimeter. Hobiki, Yakubo, and Nakayama
[15-17 computed the IDOS’s of prefractal drums over a
N(Q)=Ag0?/4m—CQPi+0(QP1), (3 sufficiently broad range of frequencies, but obtained the cu-
rious result that the MWB conjecture is valid only in the
high-frequency, short-wavelength, limit. The present study
*Electronic address: Steven.Homolya@spme.monash.edu.au shows these conclusions to be incorrect.
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rimeter length that is a function of the frequency, for
example, as measured using a caliper whose length is of the
order of /2= 7/ w, at a frequency ofo=(). Thus

— |—| L — /\L length\/2 or smallef23]. This may be quantified by replac-
i

ing a,s in the Weyl formulalEq. (6)] with an effective pe-

a,s— BN Pi=B(27/Q) Py, (7

with B constant. Then, the second term in the modified Weyl
formula becomes
FIG. 1. Prefractal closed contour&) third-generation Koch
curve, (b) fourth-generation Koch snowflake. The initiators are —[B(2m)~P1/2]QP1=—CQPr,
shown with dotted lines. The generators are shown above each con-
tour. | denotes the length of the smallest line segments on eacgnd we obtain Eq(3).

contour. If the perimeter is a prefractal with hierarchic structure

h over a finite range of length scalex(), then the substitu-
tion given by Eq.(7) may still be applicable at half wave-
lengthsh/2=1, i.e.,QA=</l. At shorter wavelengths, the full
éength a,s of the perimeter becomes apparent, so the Weyl
Jprmula should be correct. We can summarize this by writing

Reference[9] also includes numerical results for a Koc
snowflake prefractdlFig. 1(b)] aimed at confirming that in
Eq. (3) is an oscillatory function of). The results showed
that if C is the sum of a constant and an oscillatory term, th
latter must be small compared with the former, perhaps zer
In the present study, we examine the vibrations of several

prefractal Koch drums by numerical computation of the
natural modes and frequencies. The outline of the paper is as
follows.

Section Il revisits the physical argument that led to thewhich is Berry’s conjecture for the prefractal drum. Because
formulation of Berry’s Conjecture for the IDOS’s of fractal Eq (6) and its modified forn[Eq (3)] describe asymptotic
resonators, and consider what the same argument impligsehavior, relatiom Nec Pt can only be relevant for the pre-
about the IDOS’s of prefractal systems. The numericakractal if there are a sufficiently large number of modes in the
method used to compute the vibrational modes of prefractabw-frequency regime{)=< /1. To leading order in2, this
drums is described in Sec. Ill. Numerical errors are discusseghay be expressed aN(w/l)~Ag(w/l)2/4m>1, ie., |2
in Secs. 1Il C and 1l D. Numerical results for Koch drums <. This implies what is intuitively obvious, i.e., the hier-
with Dy=1.5 are presented in Sec. IV A, where we examin€archic structure should be present over a sufficiently broad
the origin of oscillations in the IDOS and their implications range of length scales, if the prefractal is to exhibit any of the

for fully fractal drums. Results for the Koch snowflake drum characteristicsin this case modal densityf the fractal.
are included in Sec. IV B. In Sec. IV C, we argue that for

self-similar fractal drums, localization of the wave amplitude

by the fractal perimeter will always result in oscillations in IIl. NUMERICAL METHOD

the IDOS that can only be accommodated by &.if C is Numerical solutions of Eqg1) and(2) were obtained by
oscillatory about a constant, with finite amplitude in the giscretizingS on a periodic mesh that is compatible with the
asymptotic limit. We summarize the main conclusions of thes efractal boundaryS. The numerical method used here is a

CQPs for Q=<
AN = a,s0/4m  for Q=x/l, ®

paper in Sec. V. special case of that used to compute modes of inhomoge-
neous membranes in Rdfl8]. A summary of the method
IIl. MODAL DENSITY FOR FRACTAL AND PREFRACTAL follows.
DRUMS The value of the wave amplitudg is considered at a

finite number of sites of a periodic lattice. The behavior of
the functionys is approximated using polynomial interpola-
tion. Boundary conditions are included in the discrete model
N(Q)=As0?/47—a,s0/4m+0(Q). (6) by imposing appropriate constraints on the interpolating
polynomials. In the resulting approximation, the Laplacian in
The first term on the right-hand side of E§) represents one Eq. (1) is approximated by a sparse real symmetric matrix,
state per arear?/Ag in wave-vector space, due to the finite and the wave amplitude by a column vector of sampled val-
area of the drum. The second term is a small correction taes ofy. Eigenvalues and eigenvectors of the matrix corre-
this due to constraints imposed on the wave amplitude by thepond to the numerical approximations to solutiasfsand
fixed boundary conditions. IBS is a fractal, thena,s is i, respectively, of the continuum problem defined by Egs.
undefined and Eq6) is inapplicable. (1) and (2). The matrix eigenvalue problem is solved effi-
Berry’s propositionf4] may be stated as follows: A mode ciently using the Lanczos algorithpd9].
with a wavelength =27/ w is largely unaffected by details A more detailed discussion of the numerical method is
of the perimeter whose sizes are of the order of a half wavegiven in the following sections.

The asymptotic, larg€), IDOS of a drum with a perim-
eter S of finite lengtha,g is given by the Weyl formula:
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TABLE |. Coefficients used to estimate the second-order partial 5 a-ay, ’
derivatives of a sampled functiof in Eq. (9). a;=|€ma; , (12
P onin = I (aca) - (3 < )
M C C C C . .
! 2 ° ‘ where €, is the permutation symbol and,=|ay. For a
1 1 hexagonal lattice withp6m symmetry, we havea;=a,
2 4/3 -1/12 =az and a;=2/3. For a square lattice, say wighi | a, and
3 3/2 —3/20 1/90 a,=a,, we geta;=a,=1 anda3z=0, as long as the grid is
4 8/5 -1/5 8/315 —1/560 not singular, i.e., no two o&; are parallel. The lattice ap-

proximation ofV2y is obtained by replacing partial deriva-
o _ tives on the right-hand side of Eq10) by the order-M
A. Approximating the Laplacian approximation given by Eq9) for a=a; . When this is done

We begin by imposing a periodic grid in the plane of theat every lattice site, Eq(l) is approximated by a matrix
drum surfaceS. Let f(u) denote the wave amplitudg(r)  eigenvalue problem of the form
along a grid line in the direction of a vectar For example,
1:or a grid line through the origin, we Ié(u) = (ua), where E Linntm= @2, (12)
a=al|a. Let the magnitude=|a| of vectora correspond to m
the grid spacing, with grid points at=na, wheren is an )
integer. The second-order partial derivative yfr) in the Whereyy denote the sampled values of the wave amplitude

direction ofa is approximated in an orde® scheme as ¥, and coefficients,, are derived from the discrete ap-
proximations of partial derivatives given by E®). Neglect-

, . ) 1 M ing boundary conditions for the moment, the form of E9).
dy=a[V(a Vzﬁ)],:nff”(U)quna=—2 > Coulfrem guarantees that, for giveM, L, depends only ohm—n|,
asm=1 so the matri{ L] is real and symmetric. The matrix is also
—2f +f,_)+0(aM), (9)  Sparse, since, at each lattice site, only a few nearest neighbor
sites are considered 4 neighbors for a rectangular mesh,
where f,=f(na)=y(na) denote sampled values a@f(r) and 6V neighbors for a triangular mesiThese properties of
along the grid, andC,, are constants that depend bhonly.  [L,] make the eigenproblem of E¢12) suitable for effi-
Equation(9) may be obtained by interpolating sampled val- cient solution using the Lanczos algoritHi9].
ues,fo_m, -..,frneim, Of f by a polynomial of degreei,
or by expandingf(u) as a Taylor series about=na. The B. Boundary conditions
values of constant€,, are shown in Table | foM=1-4.
For M=1, Eg. (9) reduces to the second-order central-

: : between lattice sites at=0 on the exterior and at=a on
difference scheme used in Ref9—17]. For M =2, Eq.(9) . . X - ) .
is equivalent to the fourth-order improved scheme as dis;ghe |nte0r|or Ofl_sh ancuo.nf(?)?ﬁgna) _|srﬁtherefore (tzl)eflned
cussed in Ref[20]. or u>0.5a. The domain of the functiori(u) may be ex-

For a triangular grid, each grid point is the intersection Oftended th.SO‘Sa’ ina manner consistent with fixed _bound-
three grid lines, along vectom, j <{1,2,3, as shown in ary conditions, by requiring thét(u) be an odd function of

Fig. 2. The Laplacian ofy may be expressed as a linear (U~ 0-5). This corresponds to setting
combination of second-order partial derivativ,giij:u// along fomer=—fm, m=1 (13

the grid lines:

Let us suppose that there is a fixed boundary=a0.5a,

5 Using Eq.(13), we can define boundaries that bisect straight
5 2 line segments connecting nearest neighbor lattice points, as

Viy= Zl 0‘1“951‘/’ (10 indicated by the dashed line in Fig. 2. The advantage of this,

. compared with having fixed boundary sites, as in Refs.

with [12,13, is that the same lattice model can be used for both
fixed and free boundary systems. For a free boundary, the

/N \/ \/ \/ minus sign on the right hand side of E4.3) is omitted.
3 To allow efficient solution of Eq(12), the symmetry of
the matrix of coefficients ,,,,, must be retained after bound-
\/\Aﬁ ary conditions are imposed. We can confirm this by substi-
tuting Eqg.(13) in Eq. (9), which, after rearranging, gives

n 1
% f (u)|u:na=_22 (C\m—n|_Cn+m—1)fm:
a‘’m

FIG. 2. Triangular mesh defined by vectais a,, anda;. The . . ]
dashed line is an example of where a boundary may be placed in théhere summation is over ath=1, and we have defined
discrete representation of a drum’s surfa@@ee Sec. Il B. Co= —ZErMn: 1CmandCy-y=0.
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FIG. 3. Dispersion relations for a hexagonal lattice model of a membrane @isgcond-order antb) eighth-order interpolation. The
angular frequencw, and the wave-vector componerkg,andk, , are expressed in units ef/a, with a denoting the lattice constant. The
boundary of the first Brillouin zone of the lattice is indicated by the thick solid lines at the base of each plot. The linear dispersion relation
is signified by thew=|k| cones.

C. Nonlinear dispersion istic of the continuous medium. Figure 3 shows that com-
Previous numerical studies on prefractal resonators enfared with the second-order central-difference meffag.
ployed the second-order central-difference method and cor?@1: the higher-order scheni&ig. 3(b)] provides a better
sidered the accuracy of “trivial” eigenvalues of the drum as@PProximation of the continuous system. This is most evi-
indicators of the accuracy of the scheme in generafl€Nt at larger values dk| in the first Brillouin zone of the

[10,13,15. For the Koch drum, as shown in Fig(a, trivial lattice, signified by the thick solid lines at the base of each
modes arise from the tiIabiI'ity of the drum surface by Plot- The lattice dispersion relations show anisotropy, reflect-

squares of are4?. Frequencies of the square drum of afea N9 the pém symmetry of the grid. Analogous statements
are also frequencies of the Koch drum. The accuracy of th@PPly for the square lattice.

lattice model for these modes may be assessed by consider- e define the erroe in the numerical approximation as
ing plane wave solutions of EqL): the relative error in frequencies,,, of the lattice system

compared with the frequencies, of the continuum:
p(r)=e*" (14
with 8:|wmf_wad/wmb (18)
Figure 4 shows as a function ofk/, for plane waves

on a square lattice. Errors are shown for second- to eighth-
order schemes. The data show that higher-order schemes do
perform better. For a given value | =k<m/a, the error
in w is reduced by increasing the ordek2of the approxi-
Cou mation on the same grid. This also implies that using a
m ’sinz(mk-aj/Z) (16)  higher-order scheme and a coarser dtatgera), we can

aj2 achieve the same accuracy as with a lower-order scheme and

a finer grid. This is of practical importance, since it allows

more efficient use of computational resources.

w?=|k|2. (15)

Considering Egs(9) and (10), for the lattice model, the lin-
ear dispersion relatiofEqg. (15)] is replaced by

M 3
w2=42 2
m=1 =1

=|k|? ) (17)

3
1+ 2 O(lk-&|?N)
=1

D. Boundary effects

The periodicity ofw as a function ofk is a direct conse-  The presence of a boundary introduces further errors in
quence of the discrete nature of the model system. All uniquene |attice approximation of the drum surface. The difficulty
traveling wave solutions are contained in the first Brillouin j, extending the above analysis to a bound system arises
zone of the lattice. . from a fundamental difference between the continuum prob-
In Fig. 3, we have plotted the frequenay against the  |em and its discrete counterpart. For the continuum problem,
wave vectork, for second- and eighth-order schemé$ (e can consider eigenstates of the Laplacian operator, from
=14, respectivelyemploying a hexagonal lattice witd  which we select those that satisfy boundary conditions. For
=ax, |a|=|a|=|ag]=a anda;+a,+a;=0. The w=1|k| the lattice, boundary conditions are accommodated by modi-
cones correspond to the linear dispersion relation charactefying the discrete approximation of the Laplacian. One con-
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FIG. 4. Relative errors in frequencies of plane waves approxi- n
mated by order-®1 interpolations on a square lattice, plotted as a @
function ofak/#. The quantityk= k| is the wave number arais
the lattice constant. The errer depends on both the magnitulle

and the direction of the wave vector, because of lattice anisotropy. 10! b
For givenk, ¢ is greatest wheik is parallel with one of the two
orthogonal lattice vectors. The errors shown here correspond to this
case. 2
100°F .
sequence of this is that plane waves are not eigenstates of the |~ Periodic Lattice, M = 1 o
bound lattice Laplacian, so the relevance of Bd) is ques- 103 F 4 ]

tionable. Trivial modes of the Koch drum are a special case
where, in a plane wave decomposition, boundary terms hap-

\'“”Periodic Lattice,

pen to cancel exactly. It is reasonable to assume that the (94 | )  M=4 -
presence of a boundary will, in general, increase errors in the 1 = — L
approximation, so Eq(16) indicates the best result we can 0.1 0.2 03 04 05 0.7 1

expect from the numerical model. a (units of w/k)

Errors in the frequencies of a drum computed using the ®)
lattice model may b_e estlmaFed nume_r'c"’,‘”y from the depen- FIG. 5. Convergence of numerical solution for the 1000th dis-
dence of the numerical solution on grid size. We have examgnct frequencyw of the second generation Koch drum of area
ined this for the second generatitn=1.5 Koch drum. The () piot of  against number of grid points per characteristic
surface of the drum was discretized using a square grid, Witfength I. (b) Plot of relative errore in frequency against lattice
the lengthl of the smallest boundary segment stretching ovekonstania. Results are shown for second- and eighth-order discrete
an integral numben of lattice constant&i=1/n. A largern  models M =1 and 4, respectively
value corresponds to a higher resolution grid and therefore a
more detailed discrete representation of the drum surfacevithin this range for alla considered. For the eighth-order
The first 2000 distinct frequencies were computed for approximation, the lattice dispersion relation gives a good
=2,3,...,20. Here we show one typical example. indication of the error for low resolution gridgk/7=0.5,

Figure 5a) shows the numerical approximations to thej.e. 4a=\. For 4a<\, the rate of convergence of thd
1000th distinct frequency. Plots of againsin are shown for =4 solution slows to about=0(a?). In this region, errors
second- and eighth-order interpolations! €1,4). As ex- for M =4 remain about 1.5 orders of magnitude smaller than
pected, for both schemes, the frequency appears to approagfrors forM=1. It would appear that, for the higher-order
a constant valuew = w,, for largen. Figure a) indicates  scheme(a?“) errors on the interior of the lattice dominate
that the higher-order scheme provides a better approximatiofor large a (coarse gridl and lower-order errors associated
for givenn. Extrapolating theN=4 data set, by assuming a with boundary conditions dominate for smallfine grid).
power law dependence of the erreron n at largen, we Numerical results presented in Sec. IV were obtained us-
estimatew, = (137.38+0.01)J/As. From this, we have esti- ing lattice approximations witivi=4, and the computed
mated the relative erra#, which is plotted in Fig. ) as a  frequenciesw correspond toak/m<0.25. The example
function of grid spacin@g. The ranges of values @f, given  shown in Fig. 5 indicates better than three digits of precision
by the dispersion relatiofEq. (16)] for square lattices, are for w in this range. We note that the accuracy of the eighth-
indicated by the dotted curvdd:or givenM, there is a range order lattice model is reduced by up to an order of magnitude
of errors because of lattice anisotropy. The upper and lowetompared with the example shown here, for modes where
bounds fore are obtained from Ed16) applied to the square the wave amplitude is strongly localized near the boundary
lattice with the wave vectds parallel with and at 45° to grid  of the system. However, the number of such modes is small,
lines, respectively.Errors for the second-order scheme areless than 1% of the number of frequencies computed.
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E. Mode count and degeneracy TABLE Il. Details of computations folD;=1.5 Koch drums.
Columns showy, prefractal generation numbelfa, number of
lattice spacings per smallest perimeter segment length; number of
Segrees of freedortDOF) of the numerical model; number of fre-
uencies computedincluding degeneracigs largest frequency
omputed(rounded to two significant figurgs

To determine the mode coumM(()) from eigenvalues
w?<Q?, the degeneracy of each eigenvalue is required. Th
Lanczos algorithm used to solve Ed.2) cannot determine
the degeneracies without the expensive computation of aﬁ
eigenvectorg 19|, p. 1559. To compute the modal density

over a greater range of frequencies than this procedure would , l/a DOF <N <ol
allow, the number of essential degeneracies was estimated by
writing Egs.(1) and(2) in a form that explicitly includes the 40 166 750 8.0

1

symmetry ofS. This shows that for the Koch drums wi€w 2 20 326 5000 5.1
andC6M symmetrie§Figs. 1a) and 1b), respectively, one 3 8 512 13333 2.1
in three and one in two distinct eigenvalues can be expected
to be twofold degenerate, respectively.

Hence, the IDOSN({)) may be estimated by were computed using a square grid. Details of the numerical

computations are summarized in Table II.
N(Q2)=yNgis(2) + 6Naed ), 19

) 1. IDOS: Overall structure
wherey=4/3, 3/2 for theC4 andC6M symmetries, respec-

tively, Ng(Q) is the number of distinct eigenvaluas? Figure 6 shows numerical results fANy({2s), over a
<02, and 6N.(Q) denotes any further contribution from frequency range pﬂsds 2.25_. This range includes all our
accidental degeneracies. Taking into account known “accifesults for the third-generation;=3, Koch drum. Fory
dental” degeneracies of trivial modes, B49) provided es- =1 and 2[Figs. 6a) and Gb), respectively only part of the
timates within two counts of the actual IDOS, for the lattice éSults are shown here to allow comparison between the
models of generatiom=1,2 drums, and also over the first three data sets. First, let us c9n5|de.r the low-frequency re-
1000 frequencies for third generation drums. Equatib®) gime, Q,,<1, where the IDOS is conjectured to be affected

was used to obtain the results presented below for third- anflY the hierarchic structure of the perimeter. For the first-
fourth-generation drums. generation drunjFig. 6@], there are only five modes with

frequencies in this range, which is insufficient to imitate the
asymptotics of the IDOS of a fractal drum. Fe=2 and 3
[Figs. b) and Gc), respectively, there are 136 ang-2712

To facilitate comparison between the modal densities ofmodes(2034 distinct frequencigsvith 4,<1, and the low-
prefractal drums of different generatioms we present the frequency IDOS shows good agreement with the conjectured

IV. RESULTS AND DISCUSSION

numerical results in terms of the scaled quantities ANsdocQSDcfl relation, particularly fo€),<<0.87. The relation
is applicable for)4,<0.87. At higher frequencies, the IDOS
Qge=Ql/, (20 is better characterized by the ordinary Weyl asymptotic,
ANg= Q. However, there are significant deviations about
ANg=4lAN/ays. (21)  this overall trend. These deviations are remarkably similar

. for different generation prefractals. We return to discuss the
Qg is the frequency expressed on a scale whegg=1 at  reason for this in Sec. IV A 2, but first let us examine the
A=2l, andANg is the IDOS correction termN scaled by  |pOS's of the first- and second-generation drums, over the
a generation-dependent factor of/d;s. In terms of the fy|| range of the computed frequencies. The results are

scaled quantities, Eq8) may be written as shown in Fig. 7. Ther=1 data are shown as points and the
b v=2 data as a thick solid curve. The high-frequency IDOS’s

C'Oy Qur=l of both drums are clearly oscillatory about the Weyl asymp-

ANgef Qse) = Qe Q=1, (22 totics, which is signified by the dashed line. The oscillations

are similar in character for the two sets of results, and show

whereC' is a constant independent of the generation of théluasiperiodicity with a period of unity ifil.

prefractal. Equation(22) follows from Egs.(8), (20), (21), The results suggest that the overall structure of the spec-
and froma,c< 111 for Ag=const. trum persists from one prefractal generation to the next. For

example ANg(Q) for v=2 [Fig. 6(b)] is a good approxi-
mation to ANg(Qge) for »=3 [Fig. 6(c)], except for the
finest structures and at the lowest frequencies. The same
Drums and Neumann resonators with the=1.5 Koch  comments apply to the= 1,2 resultgFig. 7). In Fig. 8, we
curve boundary, shown in Fig.(d for generationv=3, have plotted IDOS'’s of the three drums on one set of loga-
were the subjects of Reff10-17. The boundary of a gen- rithmic axes. The results clearly show good agreement with
eration v drum consists of A8" straight line segments of Eq. (22). Least squares fits of IANsy) =X In Q¢+ const,
lengthl, so the perimeter of the drumégs=4x8"l and the over ,<0.87, give X=1.473t0.002 for v=3, and X
area isAg=42"12. The fractal dimension iD;=In8/In4  =1.51+0.01 for v=2, in good agreement with the conjec-
=1.5. The natural frequencies of generation1,2,3 drums tured X=D;=1.5. The errors inX are the asymptotic stan-

A. Koch drum, D;=1.5
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2 ANy < QT A Q
,I
1.5 N A . .
o /:”.{ AV =0, FIG. 7. Numerical results for the scaled IDOS correction term
s 7,/\,,/' """""""""" ANg(Qge), for Koch drums of generation=1 and 2. Results are
5 1 J shown for the full range of computed frequencies.
0.5 /” tem will be given elsewhere. In the present study, we
o L Zd concentrate on the general implications of the persistence of
0 0.5 1 1.5 9 fine structure in the spectrum, from one prefractal generation
’ Q ) to the next, as illustrated in Figs. 6, 7, and 9.
(b) scl Peaks in modal density occur at approximately the same
' frequenciedin units of /1) for different generation drums.
) . o ol A region of high modal density corresponds to a decrease in
ANy gy 1 . AN(Q) with increasing(). The origin of the peaks in modal
15 N\ . ek density becomes apparent after examining the corresponding
3 Vv 4 A1 =y | modes of the drums. As an example, let us consider modes in
E 1 / A the frequency range 0.87Q01/7<0.90, where an increase
in modal density signals the end of the range of applicability
0.5 A of the MWB conjecturd Eq. (3)]. For many of the modes in
/;’7 this frequency range, the wave amplitude is localized near
0 L the perimeter, inf-shaped subdomains of the drum. An ex-
0 05 1 1.5 2 ample is shown in Fig. 1@), for v=2. The modes are

Q

scl

©

FIG. 6. Numerical results for the low-frequency scaled IDOS
correction termAN(Q¢), for Koch drums of generatiofa) v
=1, (b) v=2, and(c) »=3.

dard errors for the fits. At higher frequenci@s,=0.87, the
MWB conjecture is clearly inapplicable, and the IDOS fol-
lows ANg(Qse) =Qgy, as expected for a perimeter of finite
length. (See Ref[8], and references therejn.

2. IDOS: Fine structure

quasidegenerate, with frequencies close to that of the funda-
mental,w=0.9097/1, of a T-shaped membrane of are#4

D
19 Qe 7,

AN,

SC.

10 |

ANscl

0.1}

The results in Figs. 6—8 show that the IDOS’s of the
prefractal drums exhibit significant oscillations. The oscilla-
tions show hierarchic structure, with smaller oscillations
within larger ones. This is illustrated in Fig. 9, which shows
the fluctuation ANgy/Qg of AN, about the Weyl
asymptoticANg,=Qg, on several scales. The results indi-
cate that the number of levels of hierarchy for oscillations in
the IDOS increases with prefractal generatiorA quantita-

oot |

0.01

0.1 1 10

Q

scl

tive analysis of the relationship between the hierarchic struc- FIG. 8. Pooled numerical results farN¢,(Q.) of generation
ture of the spectrum and the hierarchic geometry of the syst-3 prefractal Koch drums.
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0.999 scl

FIG. 9. Plots of the fluctuatioh N,/ of the scaled IDOS correction teriNg,, about the Weyl asymptotidANg,= Q. The
graphs illustrate the hierarchy of oscillations in the IDOS of genergapbm=2 and(b) »=3 Koch drums. The smooth curves are cubic
splines fitted to the data. In the last graph@f the data points correspond to numerical results for eigenfrequencies of the drum, including
degeneracies. In the last graph(bf, the data points represent distinct frequencies, with the IDOS approximated BY9Eq.

For the Koch drums, there is an accumulation of modes neaas those shown in Figs. @) and 11e)] result in clusters of
this frequency. Accumulation of states, due to localizationfewer frequencies, and smaller oscillationsAih(Q). (See
near the prefractal perimeter, has been previously proposerig. 9)
to be exclusive to Neumann systems, where the boundaries (a) Prefractal generation dependencEhe numerical re-
are free to move¢15]. Our results indicate that the mecha- sylts indicate that high modal density regions of the spectrum
nisms responsible for localization and fluctuations in modahay be related to multiple instances of a geometric pattern
density have similar origins in both fixed and free boundarygp, the perimete#S. For Koch drums of generations<3,
systems. _ , we can identify at least five distinct patterns that are respon-
_ The most prominent peaks in the IDOS occur at frequengjpie for much of the fine structure of the spectra. These are
cies that are appro>§|mately integral multiples afl €5 shown in Fig. 11, with examples of associated modal dis-
”e"?‘mscle N. _(See Figs. 7 and PAt these frequencies, lo- placements. For a repeating patt€ron JS to cause a strong
cahzed.standlng waves (.)f wavelengﬁthI/n, nE.N’ are — accumulation of modes, it must partially enclose a subdo-
set up inl x| square regions at the perimeter. Figurél0 main of the drum that is relatively well separated from the

shows an example for=2, atw=3/l. rest of the drum’s surface, by being connected to it through a

.Some of the small enclosed regions near the boyndarxarrow channel. This geometry will aid localization in the
[Figs. 1Xa)—11(c)] are clearly related to the most prominent mall peninsula enclosed B When the coupling between

oscillations of the IDOS. These regions are present for al he peninsula and the “mainland” is sufficiently weak, the

generations=1, which explains why the IDOS's of differ- o431 frequencies of the peninsula will show up, weakly

ent generation drums are q_ual|tat|vely_5|m|lar. For hlgherperturbed, in the spectrum of the entire system. Each fre-
generation drums, largém units ofl) regions ondS [such

quency should occur as many times as the number of in-
stances of the peninsula. If there agginstances oP on dS,

then we can expect to findp-fold quasidegeneracies near
some of the natural frequencies of the peninsula.

For the pattern shown in Fig. dd), there aren,=4 in-
stances for generatiar= 2, andnp=16 for v=3. There are
strongly localized quasidegenerate modes associated with
this contour atw=0.5247/I, with wave amplitudes as
shown in Fig. 11d). In Figs. 12Za) and 12b), we have plot-
ted, forv=2 and 3, respectively, the distinct frequency count
(a) Ngis against ei.genfrequency, n.ea_rw=0.524nlll. .

For v=2 [Fig. 12a)], three distinct frequencies occur in a

FIG. 10. Localized modes of the second-generation Koch drunflarrow range. Numerical results for the modal displacement
at frequencies ofa) w=0.88x/1, (b) w=3.01x/I. Black and white ~ Sshow that one of the three frequencies belongs to a degener-
represent maximum amplitudes, with displacements of opposingite mode. Hence, far=2, there is a set ofip=4 quaside-
signs. generate modes associated with the open corfoof Fig.
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(b) (c) (d) (e)

FIG. 11. Prefractal contours along the boundary, indicated by the thick lines, associated with localization and regions of high modal
density in the spectra of generation 1-3 Koch drums. The contour plots, on the interiors of the drums, show the wave amplitude for examples
of localized modes. Black and white represent maximum amplitudes, with displacements of opposing signs. Eigenfrequenci@s are
2.124/1, (b) 1.237/1, (c) 0.885x/, (d) 0.524x/1, (e) 0.231x/1.

11(d). For »=3 [Fig. 12b)], there are 12 distinct frequen- re(v)=np(v)/np(v—1), (24)

cies. Four can be expected to be degenerate because of sym-

metry, so there arep=16 frequencies in a range of width

1.63x 10 °#/1. This represents a modal density that is overwhere defined, is less than 8 fes3. This is consistent with

300 times (33%2) greater than that expected from Eg).  the results shown in Figs. 6, 7, and 9, which show that the
These clusters of quasidegenerate frequencies result inamplitudes of oscillations IM\Ng (€, decrease with in-

steplike decrease AN (L), Over a narrow range of fre- creasingv. [Relationrp(v)<8 is not universally true for

qguencies neaf) ;= 0.524. The height of the step is any patterrP. For example, triviallyr p(v) =8 for line seg-
ments of length /, and rp(2)=9 for the curve P: !, which
Hp(v)=4Inp(v)/a;s=8""np(v). (23)  consists of four segments of length

) ) ) The generation dependence of the quantigfr) may be
Therefore, depending on whethep(v) increases withv  ysed to infer about the amplitudes of oscillations in the
faster or slower than ‘g Hp(v) will increase or decrease, |DOS'’s of higher generation drums. Because the number of
respectively, with increasing prefractal generatiorFor the  straight line segments of lengtton the prefractal perimeter
above example, we havg(3)=4np(2), so thesizeHp(v)  increases eightfold from one generation to the next, we may
of the drop inANSC|(QSC|) at QSd: 0.524, is reduced by a expect that, for |arg@,
factor of 2, as the generation of the drum is increased from 2

to 3.
For the patterns shown in Fig. 11, the ratio np(v)~8” and rp(v)—8, (25
30 F o simple ' SIS |
b ® 2-fold degenerate { ] 510
26 7 505
24 I 500
g 22 . B

5 = 495
20 .
18 i 490
16 - 485
14 7 480 .
12 1 1 1 ] hd 1 ] 1

0.45 0.5 0.55 0.6 0.52 0.525 0.53
(a) o (units of 7//) (b) o (units of /)

FIG. 12. Distinct frequency couM;s plotted as a function of eigenfrequeney for generation(a) v=2 and(b) =3 Koch drums, near
the quasidegenerate frequencywof 0.524r/1. In (a), frequencies corresponding to doubly degenerate modes are signified by filled circles.
The solid curves in both plots correspond to the MWB conjecltiig (3)], with constantC obtained from a best fit to the low-frequency,
0<0.87x/1, IDOSN(Q).
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01 2 3 4 5 6 7

FIG. 13. Selected results for number of instaneg&) of pre-
fractal contours? (shown on the lejton the perimeters of genera-
tion v prefractal Koch drums. The quantity plotted |iss— 8],
whererp(v) is given by Eq.(24).

for any patternP, unlessnp(v)=0 for all v. By Eq. (23,
this would imply finiteHp(v) for all v.

Equations(23) and (25) are specific to the Koch curve.
However, similar relations apply to any self-similarly iter-
ated curve. Suppose, the total number of leriglime seg-
ments increasea-fold in increasing the generation number
v by 1.[For the Koch curve of Fig. (&), =8, and for the
Koch snowflake of Fig. (b), «=4.] Then the length of the
perimeter followsag(v)*a’l, and Egs.(23) and (25) be-
come Hp(v)=4lnp(v)/a,sxa "np(v) and np(v)
~a” rp(v)—a, respectively, which still implies finite
Hp(v) for large v.

To confirm Eq.(25) numerically, we have counted the
number of instancesp(v) of repeating patternB on higher
generation,y<8, prefractal contours, using the following
method.

The prefractal closed contous$ are encoded as strings

PHYSICAL REVIEW E67, 026211 (2003

TABLE lIl. Details of numerical computations of eigenfrequen-
cies of Koch snowflake prefractal drums. Definitions of column
headings are given in Table II.

v I/a DOF <N s=owl/7
3 16.5 142849 6000 4.0
4 7.5 290893 15000 2.1

Therefore, the oscillations we observe in the IDOS's of the
generatiornv< 3 prefractals persist with a finite amplitude for
all v>3. In the IDOS’s of higher generation drums, still
smaller oscillations should arise from localization in subdo-
mains of the drum surface, which are largar units of I)
than those shown in Fig. 11. These will contribute smaller
but finite amplitude oscillations iANg.(€) for arbitrarily
large v.

(b) Fractal limit. In the fractal limit (v— ), regions that
facilitate localization will exist at arbitrarily small length
scales. Because the boundafyis a self-similar iterated set,
for a fractal contouiPy on S that partially encloses a small
(size sg) region of the drum surface, there will also be
smaller, geometrically similar, contoui, on JS, which
partially enclose similar regions of Size%:soof"“)f,

Y uelN, wherea is the constant that characterizes how the
fractal scales. The number of instanegsof contoursP,, on
the perimetewS follows

w

for s,—0, u—x, (27

by definition of D; as the self-similarity dimension. IP,
facilitates localization at a wavelength »§, then there will

of characters that represent instructions for traversing thee a cluster ofn, modes at a frequency ofv=Q,
contour in the counterclockwise direction. Each characte=2/\,. SinceP, is geometrically similar to alP,,, there

represents a change, or no change, in direction. A straighiill also be modes localized in all regions congruent with

line segment of lengthis assumed between each neighbor-

ing pair of characters. For example, the stridglL (with
periodic boundary conditionsepresents a square, withfor
“turn left 90°.” A string representing a generationprefrac-

tal Koch curve is obtained by inserting the generator string

LRRSLLR(R for right andS for straigh} between neighbor-
ing characters in the generation- 1 string, starting with the
initiator string LLLL for »=0. To count the number of in-
stancesp(v) of a geometric patter® on a prefractal con-
tour F, we count the number of matchesR® representative
string (e.g., SLLRLLR for P:-5) in F’s string.

We have plottedr(v)—8| in Fig. 13, for a selection of
patternsP. Similar results are obtained for @M considered.
The results confirm Eq(25). In all casesrp rapidly ap-
proaches the asymptotic value of 8, with

Irp(v)—8|~877, (26)
or rp(v) =8, where defined. Equatiof26) implies that for
any P, the quantityH (») approaches a finite constant value
Hp(o0) for large v, with

Hp(v) —Hp()~8"".

P, at wavelength& ,=(s,/sg)\o. This implies clusters of
n, modes at frequencies={) ,=27(sy/s,)/\o. Then by
Eq. (27), we have
n,~Q." for Q,—o. (28
The IDOSN(Q) of the fractal drum will increase abruptly
by nM~QDf counts at)l={) ,, because oh ,-fold quaside-
generacies at frequenciee=(1,. This implies finite
asymptotic fluctuations in the correctidieq. (4)] to the
Weyl leading term, i.e.,
AN(Q)—CQP1=0(OPy),

V CeR, (29)

contrary to Eq.(3), which would imply

AN(Q)—CQPr=0(QPr), 3 CeR.

B. Koch snowflake

To support the above conclusions, we also computed the
frequency spectra of Koch snowflake boundary drums. The
fourth-generation boundary is shown in Figbll For gen-
erationv, the perimeter consists 0P34” segments of length
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ANy < 4
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1.5

0.5

(b)

FIG. 14. Numerical results foANg(Q.) of generation(a) v
=3 and(b) v=4 Koch snowflake boundary drums.

I, with a,s=3x 4% and Ag= \312(8 X 9*—3X 4")/20. The

Q
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1.5

fractal dimension iD¢=In4/In 3=1.2619.
The drums were discretized using a hexagonal latticegorresponding modes are shown in Figs(bl6and 16c).

Here, we present results for drums of generatioas3 and

PHYSICAL REVIEW E7, 026211 (2003

high frequencies{)= =/l, the IDOS is again better charac-
terized as oscillatory about the Weyl asymptotldN((2)
«(). In Fig. 15, the two sets of data are plotted on logarith-
mic axes. Best fits of I{Ngy) =X In Qg+ const overQg
=<0.45 give X=1.28+0.01 for v=4, andX=1.3+0.1 for
v=3, in good agreement with the conjecturet=D;
=1.26. Data points involving the lowest frequencid;s
<10 (Q44<0.082 forv=4 and(4,<0.244 forv=3), were
considered to be outliers and were excluded from the fit.

Figure 14 shows that oscillations in the IDOS of the Koch
snowflake drum persist from one generation to the next, in
much the same way as they persist for fe=1.5 Koch
drum (Fig. 6). However, for the snowflake drums, the modal
density does not have narrow peaks that might be easily
identified with quasidegeneracies and localized modes. This
may be attributed to differences in the geometries of the
boundaries of th&®;=1.5 drums and the snowflake drums.
Unlike the D{=1.5 Koch curve, the snowflake boundary
does not facilitate narrow channels between different regions
of the drum surface, which could give rise to well-defined
peninsulas and strongly localized modes.

Numerical results show that localization does still occur
near the boundary, albeit to a lesser extent than inOthe
=1.5 Koch drums. Figure 16) shows an example of a
mode of the third-generation drum, at a frequency «of
=0.367/I. The wave amplitude is partially localized in the
six largest lobes of the drum. Fer=3, there are six modes
that are localized in a similar way, though they do not con-
tribute a significant increase to the modal density. For
=4, there are 18 similar subdomains of the boundary, where
localization may occur in the same way. Two examples of the

The distinct frequency coum; is plotted against frequency

4. Details of the numerical computations are shown in Tablg, in Fig. 16d), showing that, fo=4, there is a significant

The numerical results foANg () are shown in Fig.
14. In the low-frequency regimé),=0.45, the data show
good agreement with the conjecturadNoQPr relation. At

AN,

0.1 |
0,01
0.01

FIG. 15. Log-log plot of numerical results faXNg (g Of
Koch snowflake boundary drums of generatiorrs3 and 4.

10 ¢

scl

10

increase in modal density, near=0.367/1. However, this is

a relatively weak accumulation of modes, compared with
those observed for thB=1.5 drums, as, for example, in
Fig. 12b). In the following section, we argue that even this
weak accumulation of modes implies greater fluctuation,
0(QP12), in the IDOS of the fractal, than predicted by the
MWB conjecture,0(QPi?).

C. Fluctuations in the DOS for a self-similar boundary

Let us assume that near some frequeficy, the modal
density of the fractal is enhanced by localization near the
boundary, so that the DO&((2) near(=(}, is

p(Q,)=puwe(Q )+ dp,, (30

wherepuws is the DOS given by the MWB conjecture and
op, represents the enhancement due to accumulation of lo-
calized modes.pywg IS Obtained, by differentiating the
IDOS given by Eq.(3), as

pwwe(Q)=AsQ /27— D;COQP 1+ 0P~ 1), (31

Let us further suppose that the enhancend&gnt is attribut-
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FIG. 16. Localized modes of generatié® »=3 and(b), (c) »=4 Koch snowflake drums, at frequencies near 0.367/|. To aid
visualization, the square of the modal displacement is shown, rather thany. Black and white correspond to zero and maximum
amplitudes, respectivelyd) shows a plot of the distinct frequency couNy;s against eigenfrequency, for the v=4 drum, near the
frequencies of the localized modes=(a) 0.357x/l, (b) 0.363x/1, (c) 0.3644x/1.

able ton,, modes localized im,, similar regions at the frac- ties of stategIDOS’s) are well approximated by a two-term
tal boundary, with frequencies in a range of widtf) , cen-  expression of the form given by the modified Weyl-Berry
tered onw=(, . Then (MWB) conjecturg Eqg. (3)]. At high frequencies, where the
half wavelength is smaller than the smallest features of the
Opu=n, /AL, . drum perimeter, the IDOSI(()) oscillates about the two-

there will be localized modes att€™m Weyl asymptotidEq. (6)] that characterizes smooth,

frequenciesQ , = a*'®1Q, YueN, with a constant. For nonfractal, boundary systems.
large 1 andQ),, , the widthAQ, of the interval, containing Numerical results .for' the.normal modgs of prefractal
then,, localized modes neas~Q,, cannot be greater than drums_ show that oscnla_tlons in the IDOS, in b_oth_the low-
0(Q,). Then by Eq(28), 5p, must be at Ieasﬂ)(QDf—l)_ and high-frequency regimes, are due to localization of the
- Lok B wave amplitude near the prefractal perimeter. We have ar-
gued that the scaling properties of the perimeter imply that
AQR27—p(Q)=0(QP1 1), oscillations in the IDOS of a finite generation prefractal
drum will persist, with finite amplitudes, for arbitrarily high
so Jp,, cannot be greater tha@(Qifﬁl) either. Therefore, generations. The IDOS’s of high generation prefractal drums
we must ha\,@pMNQDrl (andAQ,~Q,). This is con- can be approximated by the IDOS of a lower generation
sistent with our earlier resulEq. (29)], which was obtained drum, except for the finest structures of the spectra. This was
by assuming thaA (), is negligible. TheapM~QDf‘1 term  confirmed numerically for Koch drums of generations 1-3,

in Eq. (30) represents local enhancements of the DOS a@nd for Koch snowflake drums of generations 3 and 4.
In Q= In a+In Q, for integral u, which supports the idea  For fractal drums, “trapped” modes near the self-similar
that the constan€ in Eq. (3) should be replaced by a peri- Perimeter will cause oscillations in the IDOS({) with
odic function of InQ [8]. amplitudes~ QPf. These oscillations are superimposed on
The numerical results for the IDOS of the third-generationthe asymptotic IDOS given by the MWB conjecture, and are
D;=1.5 prefractal Koch drum show precursors to the peri-n0t accounted for by the(Q°) error term. Instead, the
odicity of the fluctuations in the IDOS of the fractal drum. €rror term should b©(Q1), which reduces Eq3) to the
Notably, Fig. 8 shows that the most prominent peaks in th&igorous result of Eq(5). Our results indicate that Eq3)
low-frequency DOS of the prefractal are &l/m=Qy might be valid if the constan€ is replaced by a periodic

=0.074,0.27,0.89, i.e., Ifis)~—2.6,-1.3-0.1. function of In(), as suggested in Refg].
Although these conclusions indicate that the MWB con-

jecture cannot be rigorous, the numerical results show that
oscillations in the IDOS’s of the Koch drums are small, and
We have investigated the harmonic vibrations of mem-the two-term asymptotic given by E(B) is a good practical
branes with prefractal Koch curve boundaries, using a spaapproximation. In this study, we have considered only fixed
tially discrete numerical model. The accuracy of the numeri-boundary, Dirichlet, systems. For free, Neumann, boundary
cal method was assessed by reference to exactly solvabtenditions, the MWB conjecture is identical to E§), ex-
cases involving plane waves, as well as by examining theept that the constar® is negative. Numerical results in
dependence of the numerical approximation, for frequencieRefs.[15,16 indicate that localization and associated mode
of a Koch drum, on the spatial resolution of the discreteaccumulation arise in a similar way in Neumann and Dirich-
model. Numerical results for the natural frequencies of prelet systems.
fractal drums show that the low-frequency integrated densi- The numerical results of Ref$15,16, for a Neumann

Because of self-similarity,

The rigorous result of Eq5) implies that, for() — oo,

V. SUMMARY AND CONCLUDING REMARKS
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resonator with a second generation Koch curve boundargsymptotic IDOS may be suppressed, or even absent. For
suggest that oscillations in the IDOS of a fractal resonatoexample, a natural enclosure, such as a cave with irregular
with a free boundary are much greater than for the samwvalls[21], might have a much smoother frequency response
resonator with a fixed boundary. This is because a freéor sound waves than a concert hall with prefractal walls that
boundary supports more localized modes than a fixed boundwe composed of geometrically similar building blocks. The
ary. For a Neumann fractal, the amplitude of oscillations infractal resonator problem may turn out to be an example of a
the IDOS may be comparable to the magnitude of the seconghysical system where, unlike in many other cgsdsran-
term in Eq.(3), so the MWB conjecture may not be a good dom and deterministic fractality produce markedly different
approximation to the IDOS, beyond the leading-order Weylbehaviors.

term. We plan to compute the spectra of higher generation

prefractal Neumann resonators in detail, to investigate the ACKNOWLEDGMENTS
differences between vibrations in free and fixed boundary
fractals. S.H. acknowledges the financial support of the Australian

For fractals, theO(QPr) oscillatory component of the Government through the Australian Postgraduate Awards
IDOS is a direct consequence of the exact self-similarity ofScheme. Computations were performed at the HPC facilities
the boundary. For a random fractal, the oscillations in theof the Victorian Partnership of Advanced Computir2].
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