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Density of states for vibrations of fractal drums

Steven Homolya,* Charles F. Osborne, and Imants D. Svalbe
School of Physics and Materials Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia

~Received 5 August 2002; published 19 February 2003!

Vibrations of membranes with fractal boundaries~fractal drums! are investigated. Numerical results are
presented for Koch drums of fractal dimensionD f53/2 at prefractal generations 1–3, and for Koch snowflake
drums (D f5 ln 4/ln 3) at generations 3 and 4. The results show that the low-frequency integrated densities of
states~IDOS’s! of the drums are well approximated by a two-term asymptotic of the form given by the
modified Weyl-Berry~MWB! conjecture, which predicts a correction ofDN(V)}VD f to the leading-order
Weyl term. In the high-frequency regime, where the half wavelength is smaller than the smallest features of the
prefractal perimeter, the two-term Weyl asymptotic is applicable, withDN(V);V. The results also indicate
that oscillations inDN(V) arise due to localization of the wave amplitude near the prefractal perimeter. It is
argued that for a self-similar fractal boundary, the amplitude of the oscillations is asymptotically proportional
to VD f, which implies anO(VD f), rather than the conjecturedo(VD f), error term for the asymptotic IDOS
given by the MWB conjecture.
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I. INTRODUCTION

Fractal geometry provides a unifying theoretical fram
work for the description of natural irregularity@1#. The es-
sential properties of hierarchically disordered systems are
ten determined by a single parameter, the fractal dimens
When different systems with the same fractal dimension
play quantitatively similar behaviors, deterministic frac
models may be used to gain insight into the behavior of m
complex naturally disordered systems@2#. In the present
study, we consider vibrations of membranes with frac
boundaries, so-called fractal drums.

The natural modesc and frequenciesv of a drum are
solutions of the Dirichlet boundary value problem,

~¹21v2!c50 on S, ~1!

c50 on ]S, ~2!

whereS and]S denote the planar surface and the bound
of the drum, respectively. LetN(V) denote the number o
linear independent solutionsc of Eqs. ~1! and ~2! with v
,V, i.e., the number of natural frequencies of the membr
~including degeneracies! less thanV. The quantityN(V) is
the integrated density of states~IDOS! of the system.

How N(V) depends on the geometry of the boundary
closely related to Kac’s question ‘‘Can one hear the shap
a drum?’’ @3#. The Berry conjecture@4#, and its modified
form, the modified Weyl-Berry~MWB! conjecture, is that
one can at least hear the fractal dimension of the boundar
a fractal drum, because the asymptotic, largeV, IDOS fol-
lows

N~V!5ASV2/4p2CVD f1o~VD f !, ~3!
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whereD f is the fractal dimension of]S, AS is the area ofS,
andC is a positive constant.

The Berry conjecture@4#, where D f is defined as the
Hausdorff dimension, was disproved by counterexample
Ref. @5#, where Brossard and Carmona suggested that
Minkowski dimension might be more appropriate. In Re
@6#, Lapidus showed that for a drum with Minkowski me
surable perimeter]S, the following relation holds for large
V:

DN~V!5ASV2/4p2N~V! ~4!

5O~VD f !, ~5!

whereD f is the Minkowski dimension of]S. Thus Lapidus
proposed the MWB conjecture, with the value of the co
stant C in Eq. ~3! also given a new interpretation. Late
Lapidus@7# showed thatC cannot depend on the geometry
the perimeter in as simple a way as proposed in Ref.@6#.
References@8,9# show that for some systems, the MWB co
jecture cannot hold unless the constantC is replaced by a
function of V that is oscillatory about a constant.

In Ref. @4#, Berry proposed that his conjecture should a
apply to prefractal systems in the low-frequency regim
References@10–17# considered resonators with the Koc
curve boundary shown, for the third generation, in Fig. 1~a!.
The ranges of frequencies considered in Refs.@10–14# were
insufficient for quantitative confirmation of the MWB con
jecture. Nevertheless, the results indicated qualitative ag
ment, with the low-frequency modal density depleted by
irregularity of the perimeter. Hobiki, Yakubo, and Nakayam
@15–17# computed the IDOS’s of prefractal drums over
sufficiently broad range of frequencies, but obtained the
rious result that the MWB conjecture is valid only in th
high-frequency, short-wavelength, limit. The present stu
shows these conclusions to be incorrect.
©2003 The American Physical Society11-1
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Reference@9# also includes numerical results for a Koc
snowflake prefractal@Fig. 1~b!# aimed at confirming thatC in
Eq. ~3! is an oscillatory function ofV. The results showed
that if C is the sum of a constant and an oscillatory term,
latter must be small compared with the former, perhaps z

In the present study, we examine the vibrations of sev
prefractal Koch drums by numerical computation of t
natural modes and frequencies. The outline of the paper
follows.

Section II revisits the physical argument that led to t
formulation of Berry’s conjecture for the IDOS’s of fracta
resonators, and consider what the same argument im
about the IDOS’s of prefractal systems. The numeri
method used to compute the vibrational modes of prefra
drums is described in Sec. III. Numerical errors are discus
in Secs. III C and III D. Numerical results for Koch drum
with D f51.5 are presented in Sec. IV A, where we exam
the origin of oscillations in the IDOS and their implication
for fully fractal drums. Results for the Koch snowflake dru
are included in Sec. IV B. In Sec. IV C, we argue that f
self-similar fractal drums, localization of the wave amplitu
by the fractal perimeter will always result in oscillations
the IDOS that can only be accommodated by Eq.~3! if C is
oscillatory about a constant, with finite amplitude in t
asymptotic limit. We summarize the main conclusions of
paper in Sec. V.

II. MODAL DENSITY FOR FRACTAL AND PREFRACTAL
DRUMS

The asymptotic, largeV, IDOS of a drum with a perim-
eter]S of finite lengtha]S is given by the Weyl formula:

N~V!5ASV2/4p2a]SV/4p1o~V!. ~6!

The first term on the right-hand side of Eq.~6! represents one
state per areap2/AS in wave-vector space, due to the fini
area of the drum. The second term is a small correction
this due to constraints imposed on the wave amplitude by
fixed boundary conditions. If]S is a fractal, thena]S is
undefined and Eq.~6! is inapplicable.

Berry’s proposition@4# may be stated as follows: A mod
with a wavelengthl52p/v is largely unaffected by detail
of the perimeter whose sizes are of the order of a half wa

FIG. 1. Prefractal closed contours:~a! third-generation Koch
curve, ~b! fourth-generation Koch snowflake. The initiators a
shown with dotted lines. The generators are shown above each
tour. l denotes the length of the smallest line segments on e
contour.
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lengthl/2 or smaller@23#. This may be quantified by replac
ing a]S in the Weyl formula@Eq. ~6!# with an effective pe-
rimeter length that is a function of the frequency, f
example, as measured using a caliper whose length is o
order ofl/25p/v, at a frequency ofv5V. Thus

a]S→Bl12D f5B~2p/V!12D f , ~7!

with B constant. Then, the second term in the modified W
formula becomes

2@B~2p!2D f /2#VD f52CVD f ,

and we obtain Eq.~3!.
If the perimeter is a prefractal with hierarchic structu

over a finite range of length scales (* l ), then the substitu-
tion given by Eq.~7! may still be applicable at half wave
lengthsl/2* l , i.e.,V&p/ l . At shorter wavelengths, the ful
length a]S of the perimeter becomes apparent, so the W
formula should be correct. We can summarize this by writ

DN~V!5H CVD f for V&p/ l

a]SV/4p for V*p/ l ,
~8!

which is Berry’s conjecture for the prefractal drum. Becau
Eq. ~6! and its modified form@Eq. ~3!# describe asymptotic
behavior, relationDN}VD f can only be relevant for the pre
fractal if there are a sufficiently large number of modes in
low-frequency regime,V&p/ l . To leading order inV, this
may be expressed asN(p/ l )'AS(p/ l )2/4p@1, i.e., l 2

!AS . This implies what is intuitively obvious, i.e., the hie
archic structure should be present over a sufficiently br
range of length scales, if the prefractal is to exhibit any of
characteristics~in this case modal density! of the fractal.

III. NUMERICAL METHOD

Numerical solutions of Eqs.~1! and~2! were obtained by
discretizingSon a periodic mesh that is compatible with th
prefractal boundary]S. The numerical method used here is
special case of that used to compute modes of inhomo
neous membranes in Ref.@18#. A summary of the method
follows.

The value of the wave amplitudec is considered at a
finite number of sites of a periodic lattice. The behavior
the functionc is approximated using polynomial interpola
tion. Boundary conditions are included in the discrete mo
by imposing appropriate constraints on the interpolat
polynomials. In the resulting approximation, the Laplacian
Eq. ~1! is approximated by a sparse real symmetric mat
and the wave amplitude by a column vector of sampled v
ues ofc. Eigenvalues and eigenvectors of the matrix cor
spond to the numerical approximations to solutionsv2 and
c, respectively, of the continuum problem defined by E
~1! and ~2!. The matrix eigenvalue problem is solved ef
ciently using the Lanczos algorithm@19#.

A more detailed discussion of the numerical method
given in the following sections.

n-
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A. Approximating the Laplacian

We begin by imposing a periodic grid in the plane of t
drum surfaceS. Let f (u) denote the wave amplitudec(r )
along a grid line in the direction of a vectora. For example,
for a grid line through the origin, we letf (u)5c(uâ), where
â5a/uau. Let the magnitudea5uau of vectora correspond to
the grid spacing, with grid points atr5na, wheren is an
integer. The second-order partial derivative ofc(r ) in the
direction ofa is approximated in an order-2M scheme as

] â
2
c5â•@“~ â•“c!# r5na5 f 9~u!uu5na5

1

a2 (
m51

M

Cm~ f n1m

22 f n1 f n2m!1O~a2M !, ~9!

where f n5 f (na)5c(na) denote sampled values ofc(r )
along the grid, andCm are constants that depend onM only.
Equation~9! may be obtained by interpolating sampled v
ues, f n2M , . . . ,f n1M , of f by a polynomial of degree 2M ,
or by expandingf (u) as a Taylor series aboutu5na. The
values of constantsCm are shown in Table I forM51 –4.
For M51, Eq. ~9! reduces to the second-order centr
difference scheme used in Refs.@9–17#. For M52, Eq. ~9!
is equivalent to the fourth-order improved scheme as
cussed in Ref.@20#.

For a triangular grid, each grid point is the intersection
three grid lines, along vectorsaj , j P$1,2,3%, as shown in
Fig. 2. The Laplacian ofc may be expressed as a line
combination of second-order partial derivatives] âj

2
c along

the grid lines:

¹2c5(
j 51

3

a j] âj

2
c ~10!

with

TABLE I. Coefficients used to estimate the second-order par
derivatives of a sampled functionc in Eq. ~9!.

M C1 C2 C3 C4

1 1
2 4/3 21/12
3 3/2 23/20 1/90
4 8/5 21/5 8/315 21/560

FIG. 2. Triangular mesh defined by vectorsa1 , a2, anda3. The
dashed line is an example of where a boundary may be placed i
discrete representation of a drum’s surface.~See Sec. III B.!
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a j5Ue j lmaj
2 al•am

~aj3al !•~aj3am!
U, ~11!

where e j lm is the permutation symbol andaj5uaj u. For a
hexagonal lattice withp6m symmetry, we havea15a2
5a3 anda j52/3. For a square lattice, say witha1'a2 and
a15a2, we geta15a251 anda350, as long as the grid is
not singular, i.e., no two ofaj are parallel. The lattice ap
proximation of¹2c is obtained by replacing partial deriva
tives on the right-hand side of Eq.~10! by the order-2M
approximation given by Eq.~9! for a5aj . When this is done
at every lattice site, Eq.~1! is approximated by a matrix
eigenvalue problem of the form

(
m

Lmncm5v2cn , ~12!

wherecm denote the sampled values of the wave amplitu
c, and coefficientsLmn are derived from the discrete ap
proximations of partial derivatives given by Eq.~9!. Neglect-
ing boundary conditions for the moment, the form of Eq.~9!
guarantees that, for givenM, Lmn depends only onum2nu,
so the matrix@Lmn# is real and symmetric. The matrix is als
sparse, since, at each lattice site, only a few nearest neig
sites are considered (4M neighbors for a rectangular mes
and 6M neighbors for a triangular mesh!. These properties o
@Lmn# make the eigenproblem of Eq.~12! suitable for effi-
cient solution using the Lanczos algorithm@19#.

B. Boundary conditions

Let us suppose that there is a fixed boundary atr50.5a,
between lattice sites atr50 on the exterior and atr5a on
the interior ofS. Function f (u)5c(na) is therefore defined
for u.0.5a. The domain of the functionf (u) may be ex-
tended tou<0.5a, in a manner consistent with fixed bound
ary conditions, by requiring thatf (u) be an odd function of
(u20.5a). This corresponds to setting

f 2m1152 f m , m>1. ~13!

Using Eq.~13!, we can define boundaries that bisect straig
line segments connecting nearest neighbor lattice points
indicated by the dashed line in Fig. 2. The advantage of t
compared with having fixed boundary sites, as in Re
@12,13#, is that the same lattice model can be used for b
fixed and free boundary systems. For a free boundary,
minus sign on the right hand side of Eq.~13! is omitted.

To allow efficient solution of Eq.~12!, the symmetry of
the matrix of coefficientsLmn must be retained after bound
ary conditions are imposed. We can confirm this by sub
tuting Eq.~13! in Eq. ~9!, which, after rearranging, gives

f 9~u!uu5na5
1

a2 (
m

~Cum2nu2Cn1m21! f m ,

where summation is over allm>1, and we have defined
C0522(m51

M Cm andCm.M50.

l
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FIG. 3. Dispersion relations for a hexagonal lattice model of a membrane using~a! second-order and~b! eighth-order interpolation. The
angular frequencyv, and the wave-vector components,kx andky , are expressed in units ofp/a, with a denoting the lattice constant. Th
boundary of the first Brillouin zone of the lattice is indicated by the thick solid lines at the base of each plot. The linear dispersion
is signified by thev5uku cones.
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C. Nonlinear dispersion

Previous numerical studies on prefractal resonators
ployed the second-order central-difference method and c
sidered the accuracy of ‘‘trivial’’ eigenvalues of the drum
indicators of the accuracy of the scheme in gene
@10,13,15#. For the Koch drum, as shown in Fig. 1~a!, trivial
modes arise from the tilability of the drum surface
squares of area,l 2. Frequencies of the square drum of areal 2

are also frequencies of the Koch drum. The accuracy of
lattice model for these modes may be assessed by cons
ing plane wave solutions of Eq.~1!:

c~r !5eik•r ~14!

with

v25uku2. ~15!

Considering Eqs.~9! and ~10!, for the lattice model, the lin-
ear dispersion relation@Eq. ~15!# is replaced by

v254 (
m51

M

(
j 51

3
Cma j

aj
2

sin2~mk•aj /2! ~16!

5uku2F11(
j 51

3

O~ uk•aj u2N!G . ~17!

The periodicity ofv as a function ofk is a direct conse-
quence of the discrete nature of the model system. All uni
traveling wave solutions are contained in the first Brillou
zone of the lattice.

In Fig. 3, we have plotted the frequencyv against the
wave vectork, for second- and eighth-order schemesN
51,4, respectively! employing a hexagonal lattice witha1

5ax̂, ua1u5ua2u5ua3u5a and a11a21a350. The v5uku
cones correspond to the linear dispersion relation chara
02621
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istic of the continuous medium. Figure 3 shows that co
pared with the second-order central-difference method@Fig.
3~a!#, the higher-order scheme@Fig. 3~b!# provides a better
approximation of the continuous system. This is most e
dent at larger values ofuku in the first Brillouin zone of the
lattice, signified by the thick solid lines at the base of ea
plot. The lattice dispersion relations show anisotropy, refle
ing the p6m symmetry of the grid. Analogous statemen
apply for the square lattice.

We define the error« in the numerical approximation a
the relative error in frequenciesvapx of the lattice system
compared with the frequenciesvxct of the continuum:

«5uvxct2vapxu/vxct . ~18!

Figure 4 shows« as a function ofak/p, for plane waves
on a square lattice. Errors are shown for second- to eig
order schemes. The data show that higher-order scheme
perform better. For a given value ofuku5k<p/a, the error
in v is reduced by increasing the order 2M of the approxi-
mation on the same grid. This also implies that using
higher-order scheme and a coarser grid~larger a), we can
achieve the same accuracy as with a lower-order scheme
a finer grid. This is of practical importance, since it allow
more efficient use of computational resources.

D. Boundary effects

The presence of a boundary introduces further errors
the lattice approximation of the drum surface. The difficu
in extending the above analysis to a bound system ar
from a fundamental difference between the continuum pr
lem and its discrete counterpart. For the continuum probl
we can consider eigenstates of the Laplacian operator, f
which we select those that satisfy boundary conditions.
the lattice, boundary conditions are accommodated by m
fying the discrete approximation of the Laplacian. One co
1-4
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DENSITY OF STATES FOR VIBRATIONS OF FRACTAL DRUMS PHYSICAL REVIEW E67, 026211 ~2003!
sequence of this is that plane waves are not eigenstates o
bound lattice Laplacian, so the relevance of Eq.~16! is ques-
tionable. Trivial modes of the Koch drum are a special c
where, in a plane wave decomposition, boundary terms h
pen to cancel exactly. It is reasonable to assume that
presence of a boundary will, in general, increase errors in
approximation, so Eq.~16! indicates the best result we ca
expect from the numerical model.

Errors in the frequencies of a drum computed using
lattice model may be estimated numerically from the dep
dence of the numerical solution on grid size. We have exa
ined this for the second generationD f51.5 Koch drum. The
surface of the drum was discretized using a square grid, w
the lengthl of the smallest boundary segment stretching o
an integral numbern of lattice constantsa5 l /n. A larger n
value corresponds to a higher resolution grid and therefo
more detailed discrete representation of the drum surf
The first 2000 distinct frequencies were computed forn
52,3, . . .,20. Here we show one typical example.

Figure 5~a! shows the numerical approximations to t
1000th distinct frequency. Plots ofv againstn are shown for
second- and eighth-order interpolations (M51,4). As ex-
pected, for both schemes, the frequency appears to appr
a constant value,v5vxct , for largen. Figure 5~a! indicates
that the higher-order scheme provides a better approxima
for given n. Extrapolating theN54 data set, by assuming
power law dependence of the error« on n at largen, we
estimatevxct5(137.3860.01)AAS. From this, we have esti
mated the relative error«, which is plotted in Fig. 5~b! as a
function of grid spacinga. The ranges of values of«, given
by the dispersion relation@Eq. ~16!# for square lattices, are
indicated by the dotted curves.@For givenM, there is a range
of errors because of lattice anisotropy. The upper and lo
bounds for« are obtained from Eq.~16! applied to the square
lattice with the wave vectork parallel with and at 45° to grid
lines, respectively.# Errors for the second-order scheme a

FIG. 4. Relative errors« in frequencies of plane waves approx
mated by order-2M interpolations on a square lattice, plotted as
function ofak/p. The quantityk5uku is the wave number anda is
the lattice constant. The error« depends on both the magnitudek
and the direction of the wave vector, because of lattice anisotr
For givenk, « is greatest whenk is parallel with one of the two
orthogonal lattice vectors. The errors shown here correspond to
case.
02621
the

e
p-
he
e

e
-
-

th
r

a
e.

ach

on

er

within this range for alla considered. For the eighth-orde
approximation, the lattice dispersion relation gives a go
indication of the error for low resolution grids,ak/p*0.5,
i.e., 4a*l. For 4a&l, the rate of convergence of theM
54 solution slows to about«5O(a2). In this region, errors
for M54 remain about 1.5 orders of magnitude smaller th
errors forM51. It would appear that, for the higher-orde
scheme,O(a2M) errors on the interior of the lattice domina
for large a ~coarse grid! and lower-order errors associate
with boundary conditions dominate for smalla ~fine grid!.

Numerical results presented in Sec. IV were obtained
ing lattice approximations withM54, and the computed
frequenciesv correspond toak/p,0.25. The example
shown in Fig. 5 indicates better than three digits of precis
for v in this range. We note that the accuracy of the eigh
order lattice model is reduced by up to an order of magnitu
compared with the example shown here, for modes wh
the wave amplitude is strongly localized near the bound
of the system. However, the number of such modes is sm
less than 1% of the number of frequencies computed.

y.

is

FIG. 5. Convergence of numerical solution for the 1000th d
tinct frequencyv of the second generation Koch drum of areaAS .
~a! Plot of v against number of grid pointsn per characteristic
length l. ~b! Plot of relative error« in frequency against lattice
constanta. Results are shown for second- and eighth-order disc
models (M51 and 4, respectively!.
1-5
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E. Mode count and degeneracy

To determine the mode countN(V) from eigenvalues
v2,V2, the degeneracy of each eigenvalue is required.
Lanczos algorithm used to solve Eq.~12! cannot determine
the degeneracies without the expensive computation o
eigenvectors@19#, p. 155#. To compute the modal densit
over a greater range of frequencies than this procedure w
allow, the number of essential degeneracies was estimate
writing Eqs.~1! and~2! in a form that explicitly includes the
symmetry ofS. This shows that for the Koch drums withC4
andC6M symmetries@Figs. 1~a! and 1~b!, respectively#, one
in three and one in two distinct eigenvalues can be expe
to be twofold degenerate, respectively.

Hence, the IDOSN(V) may be estimated by

N~V!.gNdis~V!1dNacc~V!, ~19!

whereg54/3, 3/2 for theC4 andC6M symmetries, respec
tively, Ndis(V) is the number of distinct eigenvaluesv2

,V2, anddNacc(V) denotes any further contribution from
accidental degeneracies. Taking into account known ‘‘ac
dental’’ degeneracies of trivial modes, Eq.~19! provided es-
timates within two counts of the actual IDOS, for the latti
models of generationn51,2 drums, and also over the fir
1000 frequencies for third generation drums. Equation~19!
was used to obtain the results presented below for third-
fourth-generation drums.

IV. RESULTS AND DISCUSSION

To facilitate comparison between the modal densities
prefractal drums of different generationsn, we present the
numerical results in terms of the scaled quantities

Vscl5V l /p, ~20!

DNscl54lDN/a]S . ~21!

Vscl is the frequency expressed on a scale whereVscl51 at
l52l , andDNscl is the IDOS correction termDN scaled by
a generation-dependent factor of 4l /a]S . In terms of the
scaled quantities, Eq.~8! may be written as

DNscl~Vscl!5H C8Vscl
D f , Vscl&1

Vscl, Vscl*1,
~22!

whereC8 is a constant independent of the generation of
prefractal. Equation~22! follows from Eqs.~8!, ~20!, ~21!,
and froma]S} l 12D f for AS5const.

A. Koch drum, DfÄ1.5

Drums and Neumann resonators with theD f51.5 Koch
curve boundary, shown in Fig. 1~a! for generationn53,
were the subjects of Refs.@10–17#. The boundary of a gen
erationn drum consists of 438n straight line segments o
lengthl, so the perimeter of the drum isa]S5438nl and the
area isAS542nl 2. The fractal dimension isD f5 ln 8/ln 4
51.5. The natural frequencies of generationn51,2,3 drums
02621
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were computed using a square grid. Details of the numer
computations are summarized in Table II.

1. IDOS: Overall structure

Figure 6 shows numerical results forDNscl(Vscl), over a
frequency range ofVscl<2.25. This range includes all ou
results for the third-generation,n53, Koch drum. Forn
51 and 2,@Figs. 6~a! and 6~b!, respectively# only part of the
results are shown here to allow comparison between
three data sets. First, let us consider the low-frequency
gime,Vscl,1, where the IDOS is conjectured to be affect
by the hierarchic structure of the perimeter. For the fir
generation drum@Fig. 6~a!#, there are only five modes with
frequencies in this range, which is insufficient to imitate t
asymptotics of the IDOS of a fractal drum. Forn52 and 3
@Figs. 6~b! and 6~c!, respectively#, there are 136 and'2712
modes~2034 distinct frequencies! with Vscl,1, and the low-
frequency IDOS shows good agreement with the conjectu
DNscl}Vscl

D f relation, particularly forVscl,0.87. The relation
is applicable forVscl,0.87. At higher frequencies, the IDO
is better characterized by the ordinary Weyl asympto
DNscl5Vscl. However, there are significant deviations abo
this overall trend. These deviations are remarkably sim
for different generation prefractals. We return to discuss
reason for this in Sec. IV A 2, but first let us examine t
IDOS’s of the first- and second-generation drums, over
full range of the computed frequencies. The results
shown in Fig. 7. Then51 data are shown as points and t
n52 data as a thick solid curve. The high-frequency IDOS
of both drums are clearly oscillatory about the Weyl asym
totics, which is signified by the dashed line. The oscillatio
are similar in character for the two sets of results, and sh
quasiperiodicity with a period of unity inVscl.

The results suggest that the overall structure of the sp
trum persists from one prefractal generation to the next.
example,DNscl(Vscl) for n52 @Fig. 6~b!# is a good approxi-
mation to DNscl(Vscl) for n53 @Fig. 6~c!#, except for the
finest structures and at the lowest frequencies. The s
comments apply to then51,2 results~Fig. 7!. In Fig. 8, we
have plotted IDOS’s of the three drums on one set of lo
rithmic axes. The results clearly show good agreement w
Eq. ~22!. Least squares fits of ln(DNscl)5X ln Vscl1const,
over Vscl<0.87, give X51.47360.002 for n53, and X
51.5160.01 for n52, in good agreement with the conjec
tured X5D f51.5. The errors inX are the asymptotic stan

TABLE II. Details of computations forD f51.5 Koch drums.
Columns shown, prefractal generation number;l /a, number of
lattice spacings per smallest perimeter segment length; numbe
degrees of freedom~DOF! of the numerical model; number of fre
quencies computed~including degeneracies!; largest frequency
computed~rounded to two significant figures!.

n l /a DOF <N &v l /p

1 40 1602 750 8.0
2 20 3202 5000 5.1
3 8 5122 13333 2.1
1-6
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DENSITY OF STATES FOR VIBRATIONS OF FRACTAL DRUMS PHYSICAL REVIEW E67, 026211 ~2003!
dard errors for the fits. At higher frequenciesVscl*0.87, the
MWB conjecture is clearly inapplicable, and the IDOS fo
lows DNscl(Vscl)5Vscl, as expected for a perimeter of finit
length.~See Ref.@8#, and references therein.!

2. IDOS: Fine structure

The results in Figs. 6–8 show that the IDOS’s of t
prefractal drums exhibit significant oscillations. The oscil
tions show hierarchic structure, with smaller oscillatio
within larger ones. This is illustrated in Fig. 9, which show
the fluctuation DNscl/Vscl of DNscl about the Weyl
asymptoticDNscl5Vscl, on several scales. The results ind
cate that the number of levels of hierarchy for oscillations
the IDOS increases with prefractal generationn. A quantita-
tive analysis of the relationship between the hierarchic str
ture of the spectrum and the hierarchic geometry of the s

FIG. 6. Numerical results for the low-frequency scaled IDO
correction termDNscl(Vscl), for Koch drums of generation~a! n
51, ~b! n52, and~c! n53.
02621
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tem will be given elsewhere. In the present study,
concentrate on the general implications of the persistenc
fine structure in the spectrum, from one prefractal genera
to the next, as illustrated in Figs. 6, 7, and 9.

Peaks in modal density occur at approximately the sa
frequencies~in units of p/ l ) for different generation drums
A region of high modal density corresponds to a decreas
DN(V) with increasingV. The origin of the peaks in moda
density becomes apparent after examining the correspon
modes of the drums. As an example, let us consider mode
the frequency range 0.87,V l /p,0.90, where an increas
in modal density signals the end of the range of applicabi
of the MWB conjecture@Eq. ~3!#. For many of the modes in
this frequency range, the wave amplitude is localized n
the perimeter, inT-shaped subdomains of the drum. An e
ample is shown in Fig. 10~a!, for n52. The modes are
quasidegenerate, with frequencies close to that of the fun
mental,v50.909p/ l , of a T-shaped membrane of area 4l 2.

FIG. 7. Numerical results for the scaled IDOS correction te
DNscl(Vscl), for Koch drums of generationn51 and 2. Results are
shown for the full range of computed frequencies.

FIG. 8. Pooled numerical results forDNscl(Vscl) of generation
1–3 prefractal Koch drums.
1-7
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FIG. 9. Plots of the fluctuationDNscl /Vscl of the scaled IDOS correction termDNscl , about the Weyl asymptotic,DNscl5Vscl . The
graphs illustrate the hierarchy of oscillations in the IDOS of generation~a! n52 and~b! n53 Koch drums. The smooth curves are cub
splines fitted to the data. In the last graph of~a!, the data points correspond to numerical results for eigenfrequencies of the drum, inc
degeneracies. In the last graph of~b!, the data points represent distinct frequencies, with the IDOS approximated by Eq.~19!.
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For the Koch drums, there is an accumulation of modes n
this frequency. Accumulation of states, due to localizat
near the prefractal perimeter, has been previously propo
to be exclusive to Neumann systems, where the bounda
are free to move@15#. Our results indicate that the mech
nisms responsible for localization and fluctuations in mo
density have similar origins in both fixed and free bound
systems.

The most prominent peaks in the IDOS occur at frequ
cies that are approximately integral multiples ofp/ l , i.e.,
nearVsclPN. ~See Figs. 7 and 9.! At these frequencies, lo
calized standing waves of wavelengthsl.2l /n, nPN, are
set up inl 3 l square regions at the perimeter. Figure 10~b!
shows an example forn52, atv.3p/ l .

Some of the small enclosed regions near the bound
@Figs. 11~a!–11~c!# are clearly related to the most promine
oscillations of the IDOS. These regions are present for
generationsn>1, which explains why the IDOS’s of differ
ent generation drums are qualitatively similar. For high
generation drums, larger~in units of l ) regions on]S @such

FIG. 10. Localized modes of the second-generation Koch d
at frequencies of~a! v50.88p/ l , ~b! v53.01p/ l . Black and white
represent maximum amplitudes, with displacements of oppo
signs.
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as those shown in Figs. 11~d! and 11~e!# result in clusters of
fewer frequencies, and smaller oscillations inDN(V). ~See
Fig. 9.!

(a) Prefractal generation dependence.The numerical re-
sults indicate that high modal density regions of the spectr
may be related to multiple instances of a geometric patt
on the perimeter]S. For Koch drums of generationsn<3,
we can identify at least five distinct patterns that are resp
sible for much of the fine structure of the spectra. These
shown in Fig. 11, with examples of associated modal d
placements. For a repeating patternP on ]S to cause a strong
accumulation of modes, it must partially enclose a sub
main of the drum that is relatively well separated from t
rest of the drum’s surface, by being connected to it throug
narrow channel. This geometry will aid localization in th
small peninsula enclosed byP. When the coupling between
the peninsula and the ‘‘mainland’’ is sufficiently weak, th
natural frequencies of the peninsula will show up, wea
perturbed, in the spectrum of the entire system. Each
quency should occur as many times as the number of
stances of the peninsula. If there arenP instances ofP on ]S,
then we can expect to findnP-fold quasidegeneracies nea
some of the natural frequencies of the peninsula.

For the pattern shown in Fig. 11~d!, there arenP54 in-
stances for generationn52, andnP516 for n53. There are
strongly localized quasidegenerate modes associated
this contour at v50.524p/ l , with wave amplitudes as
shown in Fig. 11~d!. In Figs. 12~a! and 12~b!, we have plot-
ted, forn52 and 3, respectively, the distinct frequency cou
Ndis against eigenfrequencyv, nearv50.524p/ l .

For n52 @Fig. 12~a!#, three distinct frequencies occur in
narrow range. Numerical results for the modal displacem
show that one of the three frequencies belongs to a dege
ate mode. Hence, forn52, there is a set ofnP54 quaside-
generate modes associated with the open contourP of Fig.

m

g

1-8
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FIG. 11. Prefractal contours along the boundary, indicated by the thick lines, associated with localization and regions of hig
density in the spectra of generation 1–3 Koch drums. The contour plots, on the interiors of the drums, show the wave amplitude for
of localized modes. Black and white represent maximum amplitudes, with displacements of opposing signs. Eigenfrequencies av5~a!
2.12p/l, ~b! 1.23p/l, ~c! 0.885p/l, ~d! 0.524p/l, ~e! 0.231p/l.
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11~d!. For n53 @Fig. 12~b!#, there are 12 distinct frequen
cies. Four can be expected to be degenerate because of
metry, so there arenP516 frequencies in a range of widt
1.6331025p/ l . This represents a modal density that is ov
300 times (33762) greater than that expected from Eq.~3!.

These clusters of quasidegenerate frequencies result
steplike decrease inDNscl(Vscl), over a narrow range of fre
quencies nearVscl50.524. The height of the step is

HP~n!.4lnP~n!/a]S582nnP~n!. ~23!

Therefore, depending on whethernP(n) increases withn
faster or slower than 8n, HP(n) will increase or decrease
respectively, with increasing prefractal generationn. For the
above example, we havenP(3)54nP(2), so thesizeHP(n)
of the drop inDNscl (Vscl) at Vscl50.524, is reduced by a
factor of 2, as the generation of the drum is increased fro
to 3.

For the patterns shown in Fig. 11, the ratio
02621
ym-

r

a

2

r P~n!5nP~n!/nP~n21!, ~24!

where defined, is less than 8 forn<3. This is consistent with
the results shown in Figs. 6, 7, and 9, which show that
amplitudes of oscillations inDNscl(Vscl) decrease with in-
creasingn. @Relation r P(n),8 is not universally true for
any patternP. For example, trivially,r P(n)58 for line seg-

consists of four segments of lengthl.#
The generation dependence of the quantitynP(n) may be

used to infer about the amplitudes of oscillations in t
IDOS’s of higher generation drums. Because the numbe
straight line segments of lengthl on the prefractal perimete
increases eightfold from one generation to the next, we m
expect that, for largen,

nP~n!;8n and r P~n!→8, ~25!
ircles.
y,
FIG. 12. Distinct frequency countNdis plotted as a function of eigenfrequencyv, for generation~a! n52 and~b! n53 Koch drums, near
the quasidegenerate frequency ofv50.524p/ l . In ~a!, frequencies corresponding to doubly degenerate modes are signified by filled c
The solid curves in both plots correspond to the MWB conjecture@Eq. ~3!#, with constantC obtained from a best fit to the low-frequenc
V,0.87p/ l , IDOS N(V).
1-9



.
r-

er

e

g

s
th
te
ig
or

in

-

e

he
r

ill
o-

ller

,
ll
e

he

ith

y

the
he

-

n-
n

HOMOLYA, OSBORNE, AND SVALBE PHYSICAL REVIEW E67, 026211 ~2003!
for any patternP, unlessnP(n)50 for all n. By Eq. ~23!,
this would imply finiteHP(n) for all n.

Equations~23! and ~25! are specific to the Koch curve
However, similar relations apply to any self-similarly ite
ated curve. Suppose, the total number of lengthl line seg-
ments increasesa-fold in increasing the generation numb
n by 1. @For the Koch curve of Fig. 1~a!, a58, and for the
Koch snowflake of Fig. 1~b!, a54.# Then the length of the
perimeter followsa]S(n)}anl , and Eqs.~23! and ~25! be-
come HP(n).4lnP(n)/a]S}a2nnP(n) and nP(n)
;an,r P(n)→a, respectively, which still implies finite
HP(n) for largen.

To confirm Eq. ~25! numerically, we have counted th
number of instancesnP(n) of repeating patternsP on higher
generation,n<8, prefractal contours, using the followin
method.

The prefractal closed contours]S are encoded as string
of characters that represent instructions for traversing
contour in the counterclockwise direction. Each charac
represents a change, or no change, in direction. A stra
line segment of lengthl is assumed between each neighb
ing pair of characters. For example, the stringLLLL ~with
periodic boundary conditions! represents a square, withL for
‘‘turn left 90°.’’ A string representing a generationn prefrac-
tal Koch curve is obtained by inserting the generator str
LRRSLLR(R for right andS for straight! between neighbor-
ing characters in the generationn21 string, starting with the
initiator string LLLL for n50. To count the number of in
stancesnP(n) of a geometric patternP on a prefractal con-
tour F, we count the number of matches ofP’s representative

We have plottedur P(n)28u in Fig. 13, for a selection of
patternsP. Similar results are obtained for allP considered.
The results confirm Eq.~25!. In all cases,r P rapidly ap-
proaches the asymptotic value of 8, with

ur P~n!28u;82n, ~26!

or r P(n)58, where defined. Equation~26! implies that for
anyP, the quantityHP(n) approaches a finite constant valu
HP(`) for largen, with

HP~n!2HP~`!;82n.

FIG. 13. Selected results for number of instancesnp(n) of pre-
fractal contoursP ~shown on the left! on the perimeters of genera
tion n prefractal Koch drums. The quantity plotted isur P28u,
wherer P(n) is given by Eq.~24!.
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Therefore, the oscillations we observe in the IDOS’s of t
generationn<3 prefractals persist with a finite amplitude fo
all n.3. In the IDOS’s of higher generation drums, st
smaller oscillations should arise from localization in subd
mains of the drum surface, which are larger~in units of l )
than those shown in Fig. 11. These will contribute sma
but finite amplitude oscillations inDNscl(Vscl) for arbitrarily
largen.

(b) Fractal limit. In the fractal limit (n→`), regions that
facilitate localization will exist at arbitrarily small length
scales. Because the boundary]S is a self-similar iterated set
for a fractal contourP0 on ]S that partially encloses a sma
~size s0) region of the drum surface, there will also b
smaller, geometrically similar, contoursPm on ]S, which
partially enclose similar regions of sizessm5s0a2m/D f ,
;mPN, wherea is the constant that characterizes how t
fractal scales. The number of instancesnm of contoursPm on
the perimeter]S follows

nm;sm
2D f for sm→0, m→`, ~27!

by definition of D f as the self-similarity dimension. IfP0
facilitates localization at a wavelength ofl0, then there will
be a cluster of n0 modes at a frequency ofv5V0
52p/l0. SinceP0 is geometrically similar to allPm , there
will also be modes localized in all regions congruent w
Pm , at wavelengthslm5(sm /s0)l0. This implies clusters of
nm modes at frequenciesv5Vm52p(s0 /sm)/l0. Then by
Eq. ~27!, we have

nm;Vm
D f for Vm→`. ~28!

The IDOSN(V) of the fractal drum will increase abruptl
by nm;VD f counts atV5Vm , because ofnm-fold quaside-
generacies at frequenciesv5Vm . This implies finite
asymptotic fluctuations in the correction@Eq. ~4!# to the
Weyl leading term, i.e.,

DN~V!2CVD f5O~VD f !, ; CPR, ~29!

contrary to Eq.~3!, which would imply

DN~V!2CVD f5o~VD f !, ' CPR.

B. Koch snowflake

To support the above conclusions, we also computed
frequency spectra of Koch snowflake boundary drums. T
fourth-generation boundary is shown in Fig. 1~b!. For gen-
erationn, the perimeter consists of 334n segments of length

TABLE III. Details of numerical computations of eigenfreque
cies of Koch snowflake prefractal drums. Definitions of colum
headings are given in Table II.

n l /a DOF <N &v l /p

3 16.5 142849 6000 4.0
4 7.5 290893 15000 2.1
1-10
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DENSITY OF STATES FOR VIBRATIONS OF FRACTAL DRUMS PHYSICAL REVIEW E67, 026211 ~2003!
l, with a]S53344l and AS5A3l 2(839n2334n)/20. The
fractal dimension isD f5 ln 4/ln 3.1.2619.

The drums were discretized using a hexagonal latt
Here, we present results for drums of generationsn53 and
4. Details of the numerical computations are shown in Ta
III.

The numerical results forDNscl(Vscl) are shown in Fig.
14. In the low-frequency regime,Vscl&0.45, the data show
good agreement with the conjecturedDN}VD f relation. At

FIG. 14. Numerical results forDNscl(Vscl) of generation~a! n
53 and~b! n54 Koch snowflake boundary drums.

FIG. 15. Log-log plot of numerical results forDNscl(Vscl) of
Koch snowflake boundary drums of generationsn53 and 4.
02621
e.

le

high frequencies,V*p/ l , the IDOS is again better charac
terized as oscillatory about the Weyl asymptotic,DN(V)
}V. In Fig. 15, the two sets of data are plotted on logari
mic axes. Best fits of ln(DNscl)5X ln Vscl1const overVscl
<0.45 giveX51.2860.01 for n54, andX51.360.1 for
n53, in good agreement with the conjecturedX5D f
.1.26. Data points involving the lowest frequencies,Ndis
<10 (Vscl,0.082 forn54 andVscl,0.244 forn53), were
considered to be outliers and were excluded from the fit.

Figure 14 shows that oscillations in the IDOS of the Ko
snowflake drum persist from one generation to the next
much the same way as they persist for theD f51.5 Koch
drum ~Fig. 6!. However, for the snowflake drums, the mod
density does not have narrow peaks that might be ea
identified with quasidegeneracies and localized modes. T
may be attributed to differences in the geometries of
boundaries of theD f51.5 drums and the snowflake drum
Unlike the D f51.5 Koch curve, the snowflake bounda
does not facilitate narrow channels between different regi
of the drum surface, which could give rise to well-defin
peninsulas and strongly localized modes.

Numerical results show that localization does still occ
near the boundary, albeit to a lesser extent than in theD f
51.5 Koch drums. Figure 16~a! shows an example of a
mode of the third-generation drum, at a frequency ofv
.0.36p/ l . The wave amplitude is partially localized in th
six largest lobes of the drum. Forn53, there are six modes
that are localized in a similar way, though they do not co
tribute a significant increase to the modal density. Forn
54, there are 18 similar subdomains of the boundary, wh
localization may occur in the same way. Two examples of
corresponding modes are shown in Figs. 16~b! and 16~c!.
The distinct frequency countNdis is plotted against frequenc
v in Fig. 16~d!, showing that, forn54, there is a significant
increase in modal density, nearv50.36p/ l . However, this is
a relatively weak accumulation of modes, compared w
those observed for theD f51.5 drums, as, for example, i
Fig. 12~b!. In the following section, we argue that even th
weak accumulation of modes implies greater fluctuati
O(VD f22), in the IDOS of the fractal, than predicted by th
MWB conjecture,o(VD f22).

C. Fluctuations in the DOS for a self-similar boundary

Let us assume that near some frequencyVm , the modal
density of the fractal is enhanced by localization near
boundary, so that the DOSr(V) nearV5Vm is

r~Vm!5rMWB~Vm!1drm , ~30!

whererMWB is the DOS given by the MWB conjecture an
drm represents the enhancement due to accumulation o
calized modes.rMWB is obtained, by differentiating the
IDOS given by Eq.~3!, as

rMWB~V!5ASV/2p2D fCVD f211o~VD f21!. ~31!

Let us further suppose that the enhancementdrm is attribut-
1-11
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FIG. 16. Localized modes of generation~a! n53 and ~b!, ~c! n54 Koch snowflake drums, at frequencies nearv50.36p/ l . To aid
visualization, the square of the modal displacementucu2 is shown, rather thanc. Black and white correspond to zero and maximu
amplitudes, respectively.~d! shows a plot of the distinct frequency countNdis against eigenfrequencyv, for the n54 drum, near the
frequencies of the localized modes:v5~a! 0.357p/l, ~b! 0.363p/l, ~c! 0.3644p/l.
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able tonm modes localized innm similar regions at the frac
tal boundary, with frequencies in a range of widthDVm cen-
tered onv5Vm . Then

drm.nm /DVm .

Because of self-similarity, there will be localized modes
frequenciesVm5am/D fV0 , ;mPN, with a constant. For
largem andVm , the widthDVm of the interval, containing
thenm localized modes nearv'Vm , cannot be greater tha
O(Vm). Then by Eq.~28!, drm must be at leastO(Vm

D f21).
The rigorous result of Eq.~5! implies that, forV→`,

ASV/2p2r~V!5O~VD f21!,

so drm cannot be greater thanO(Vm
D f21) either. Therefore,

we must havedrm;VD f21 ~and DVm;Vm). This is con-
sistent with our earlier result@Eq. ~29!#, which was obtained
by assuming thatDVm is negligible. Thedrm;Vm

D f21 term
in Eq. ~30! represents local enhancements of the DOS
ln V5m ln a1ln V0, for integralm, which supports the idea
that the constantC in Eq. ~3! should be replaced by a per
odic function of lnV @8#.

The numerical results for the IDOS of the third-generat
D f51.5 prefractal Koch drum show precursors to the pe
odicity of the fluctuations in the IDOS of the fractal drum
Notably, Fig. 8 shows that the most prominent peaks in
low-frequency DOS of the prefractal are atV l /p5Vscl
50.074,0.27,0.89, i.e., ln(Vscl)'22.6,21.3,20.1.

V. SUMMARY AND CONCLUDING REMARKS

We have investigated the harmonic vibrations of me
branes with prefractal Koch curve boundaries, using a s
tially discrete numerical model. The accuracy of the nume
cal method was assessed by reference to exactly solv
cases involving plane waves, as well as by examining
dependence of the numerical approximation, for frequen
of a Koch drum, on the spatial resolution of the discre
model. Numerical results for the natural frequencies of p
fractal drums show that the low-frequency integrated de
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ties of states~IDOS’s! are well approximated by a two-term
expression of the form given by the modified Weyl-Ber
~MWB! conjecture@Eq. ~3!#. At high frequencies, where th
half wavelength is smaller than the smallest features of
drum perimeter, the IDOSN(V) oscillates about the two
term Weyl asymptotic@Eq. ~6!# that characterizes smooth
nonfractal, boundary systems.

Numerical results for the normal modes of prefrac
drums show that oscillations in the IDOS, in both the lo
and high-frequency regimes, are due to localization of
wave amplitude near the prefractal perimeter. We have
gued that the scaling properties of the perimeter imply t
oscillations in the IDOS of a finite generation prefrac
drum will persist, with finite amplitudes, for arbitrarily hig
generations. The IDOS’s of high generation prefractal dru
can be approximated by the IDOS of a lower generat
drum, except for the finest structures of the spectra. This
confirmed numerically for Koch drums of generations 1–
and for Koch snowflake drums of generations 3 and 4.

For fractal drums, ‘‘trapped’’ modes near the self-simil
perimeter will cause oscillations in the IDOSN(V) with
amplitudes;VD f . These oscillations are superimposed
the asymptotic IDOS given by the MWB conjecture, and a
not accounted for by theo(VD f) error term. Instead, the
error term should beO(VD f), which reduces Eq.~3! to the
rigorous result of Eq.~5!. Our results indicate that Eq.~3!
might be valid if the constantC is replaced by a periodic
function of lnV, as suggested in Ref.@8#.

Although these conclusions indicate that the MWB co
jecture cannot be rigorous, the numerical results show
oscillations in the IDOS’s of the Koch drums are small, a
the two-term asymptotic given by Eq.~3! is a good practical
approximation. In this study, we have considered only fix
boundary, Dirichlet, systems. For free, Neumann, bound
conditions, the MWB conjecture is identical to Eq.~3!, ex-
cept that the constantC is negative. Numerical results in
Refs. @15,16# indicate that localization and associated mo
accumulation arise in a similar way in Neumann and Diric
let systems.

The numerical results of Refs.@15,16#, for a Neumann
1-12
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DENSITY OF STATES FOR VIBRATIONS OF FRACTAL DRUMS PHYSICAL REVIEW E67, 026211 ~2003!
resonator with a second generation Koch curve bound
suggest that oscillations in the IDOS of a fractal resona
with a free boundary are much greater than for the sa
resonator with a fixed boundary. This is because a f
boundary supports more localized modes than a fixed bou
ary. For a Neumann fractal, the amplitude of oscillations
the IDOS may be comparable to the magnitude of the sec
term in Eq.~3!, so the MWB conjecture may not be a goo
approximation to the IDOS, beyond the leading-order W
term. We plan to compute the spectra of higher genera
prefractal Neumann resonators in detail, to investigate
differences between vibrations in free and fixed bound
fractals.

For fractals, theO(VD f) oscillatory component of the
IDOS is a direct consequence of the exact self-similarity
the boundary. For a random fractal, the oscillations in
ry

n

tt
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asymptotic IDOS may be suppressed, or even absent.
example, a natural enclosure, such as a cave with irreg
walls @21#, might have a much smoother frequency respo
for sound waves than a concert hall with prefractal walls t
are composed of geometrically similar building blocks. T
fractal resonator problem may turn out to be an example
physical system where, unlike in many other cases@2#, ran-
dom and deterministic fractality produce markedly differe
behaviors.
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